THE SIX AND TEN REPORT January 2006

Section 1. Analysis of 28 MHz reports from the UK
Section 2. Analysis of 50 MHz reports from the UK
Section 3. Solar and Geomagnetic Data
Section 4. 50 MHz outside Britain
Section 5. Beacon news and 28 MHz worldwide
Section 6. 14 MHz beacon reports from the UK

Note: propagation commentaries for the $\mathbf{2 8} \mathbf{~ M H z ~ U K ~ s e c t i o n s ~ h a v e ~ b e e n ~ s c a l e d ~ d o w n ~}$ in an attempt to catch up with data compilation and report publication.

Analysis of $\mathbf{2 8} \mathbf{~ M H z}$ reports from the UK

28 MHz reports and logs for January 2006 from G2AHU, G3IMW, G3USF, G3YBT, G4JCC, G4UPS, GOAEV, GOIHF and packet cluster reports. Compilation and commentary by GOAEV.

Both F2 and Es propagation were evident during January. Openings were slightly less frequent than in December.

Beacon graphs legend

Legend for all beacon graphs in this Section: - graph bars (left Y -axis): beacon reliability as the percentage of days a beacon was heard by any UK observer within each time band. Graph lines (right Y-axis): Signal Strength as the average of the daily maximum Signal reported by any observer in each time band. Time band codes (X-axis): $6=0600-0900,9=0900-1200,12=1200-1500$, etc. Callsigns are followed by daily reliability figures, the percentage of days per month when the beacon was reported.

European Propagation / Beacons

Propagation modes for European beacons.

All the beacon monitoring results graphed above are due to Sporadic E with the exception of those for SV3AQR (via F2).

The graph opposite show the results of monitoring of the GB3RAL beacons on 28.215 (lower blue line) and on 28.191 (upper red line). The new beacon on 28.191 appears, on average, to have the stronger signal. Dawn and dusk enhancements are apparent on both beacons this month.

Propagation to Asia, Africa, Oceania, South and Central America

Beacon Graphs.

Beacon Notes.

LU4AA is QRT and OA4B is believed to be off air - all other NCDXF beacons within current propagation range on 10 m are active.

Suggested propagation modes

All beacons were heard by "normal" F2 propagation. There was no direct evidence of "TEP", though this could be expected on paths to southern Africa.

10 m DX in January 2006

The following list of DX countries worked or heard in the UK comes from packet cluster Spots (DX
Summit: http://oh2aq.kolumbus.com/dxs/)
DX in January 2006: 4X, 5B, EA8, LU, T5, V2, VK(8), ZS.
DX in December 2005 for comparison: 3DA0, 4X, 5B, 5U, 6W, 7X, CX, EA8, EA9, EK, FR, FY, LU, PY, PZ, ST, TA, UA9, VK(6,8), W, YV, Z2, ZC, ZD8, ZS (includes 10m ARRL contest)

DX in January 2005 for comparison: 4L, 5B, 8P, 9G, 9J, A6, CX, EA9, FR, HZ, KP4, LU, PY, UA9, UN, VE, VK5, VQ, VU - not much different to December 2005 but much more than January 2006.

Propagation to North America

No North American beacons were reported this month

Analysis of 50 MHz reports from the UK

UK 50 MHz reports for January 2006 from G2ADR, G3IMW, G4UPS and via packet cluster spots. Compilation and commentary by GOAEV.

After the poor showing of winter sporadic E on Six in December, any Es openings at all would look good this month. In fact, January provided half a dozen openings with those on $1^{\text {st }}, 7^{\text {th }}$ and $29^{\text {th }}$ being reasonable events. Overall, the winter season now looks "passable", though poorer than average. At least the opening on New Years Day enabled many people to make contacts with stations in countries such as I, OE, OK, SP and 9A. For those QRV on JT6M, contacts with these parts of Europe were available on a fairly regular basis - and it is with such digital modes that most activity resides these days. Over 80% of the contacts reported in January were by JT6M, and most of these were completed via meteor scatter. Troposcatter provided many semi-local QSOs, a significant proportion being carried out using JT6M. The vast majority of these QSOs were of no great distance but there were a few long distance contacts. January was characterised by a quiet sun and an undisturbed geomagnetic field, which explains why the month produced only one weak radio aurora.

Sporadic E

Sporadic E results tabulated below ordered alphabetically by country prefix. Percentages following the country name are the daily reliability values (the number of days when propagation was reported). The first row of each table, "D" is the day of the month, subsequent rows give the maximum signal strength reported from the UK in each of three hour time bands ("06" for the band 0600-0900, "09" for the band 0900-1200, etc.). A figure of " 0 " indicates that signal strength was not reported.

	9H (3\%)	CN (3\%)	CT (3\%)	DL (3\%)	EA (6\%)	EA9 (3\%)	HA [rx] (3\%)	I Italy (13\%)	LA (3\%)
D	1	29	29	7	729	29	1	13729	3
06 09				5			9		
12								35	0
15	9	9	8	9	09			79	
18	9		7		09	0			

	OE (3\%	OK/OM (3\%)	OZ (6\%)	SP (6\%)		YO (3\%)		/9A/S	S5/T9/Z3 (10\%)	ZB (3\%)
D	1	1	39		7	1		37	7	29
09	9	5		0	0	0	9			
12			5	5				5		
15	9	9			9		8		9	5
18 21			0							

Sporadic E was reported on 5 days with the events on the $1^{\text {st }}, 7^{\text {th }}$ and $29^{\text {th }}$ being quite reasonable
Es Propagation Summary.
Es Summary

Sporadic E took on a more typical mid-winter character in January, though the number and extent of the January events were not great enough to compensate for the poor showing in December. This is displayed in the following graph that charts the progression of the 6 m Sporadic E year compared to an average of the previous 11 years. The 2005-2006 winter season now appears (in this graph) to have a "peak" in early January, not much different to the peak seen in the 11-year average data but at a much lower level than the 11-year average. Despite several unusual features in the frequency of Es openings during the 2005 autumn and winter, the overall distribution of events has turned out to be fairly similar to the norm.

50 MHzEs (27day moving averages) 2005-2006 season compared to 11 year average

The graph shows 27 -day moving averages of the daily country/area counts calculated directly from the data reported each month in the Six and Ten Report. The upper (red or paler) line is the moving average data for the year March 2005 to February 2006, a period chosen so that the "Es year" starts and ends at the "Es minimum". The lower (black / darker) line is the 11 year (1995-2005 inclusive) moving average of the same measure.

Tropospheric propagation

Here's a list of spots for the better "tropo" distances, including those of dubious mode, and spots indicating better than usual tropo conditions. Incidentally, the vast majority of "tropo" contacts were by JT6M this month

1	1142	DK1MAX (JN58) > G4DEZ (JO03) "sp; 42 TR hrd" (950 km. Does "sp" here mean Es?)
1	1225	GM7PBB (IO68) > G4DEZ 52
8	1712	M1DUD (JO02) > LX0SIX 539 "for last 20 minutes"
24	1520	G4PCI > GM4ISM jt6m
25	0758	DH6JL (JO31) > GB3BUX 529 (normally 419)
29	0520	G7RAU (IO90) > GB3BAA 599+ (normally 539)
29	0521	G7RAU > GB3BUX 589 (normally 529)
30	0952	GW6TEO (IO71) > F6GEX (IN78) J6M
31	1721	G3TCT (IO91) > GB3LER 519 "Tropo!"

Aurora

As described in the solar and magnetic data section (section 3), the geomagnetic field was particularly quiet this month. Only on the $26^{\text {th }}$ did UK K-indices reach 5 (minor storm levels), but no aurora was reported on this date. The single aurora detected by UK amateurs was on $23^{\text {rd }}$ (max K of 4)

```
23 rd 12z 1302 G4IGO spotted 48/49 MHz TV signals via aurora
    15z 1639 GM7PBB > GB3LER 52A "at times"
    18z 1927 G4IGO reported 48240 signal weak by aurora
```


Meteor Scatter

JT6M was clearly the major focus of activity again this month. Despite the contribution from several wellreported sporadic E event, fully 82% (630 of 770) of all reports received direct or via the DX clusters were for the JT6M mode.

MS heard/worked (mostly via JT6M) in January by day. Weekend days (when activity is likely to be greater) are highlighted in grey. The $2^{\text {nd }}$ of January was also a holiday in the UK and amateur activity on this day merged with increased activity due to the Quadrantids shower ($2^{\text {nd }}-3^{\text {rd }}$ January). Once again it appears that the increased meteor flux provide by major showers makes a relatively minor impact on the ability to make MS contacts via JT6M.

Date	1	2	3	4	5	6	7	8	9	10	1	12	13	14	1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
MS QSOs	21	24	27	11	4	6	11	14	5	4	5	2	3	13	15	1	3	12	9	14	9	7	6	2	3	4	4	8	8	3	1
All JT6M	40	33	47	17	8	10	24	32	12	8	10	10	8	33	43	7	7	23	18	32	22	18	10	11	6	10	20	29	20	8	1

MS QSOs = all QSOs where MS mode indicated or inferred: mainly digital modes.
All JT6M = all JT6M QSOs/reception reports less those explicitly identified as tropo or Es
MS heard/worked (mainly via JT6M) in January 2006 by hour

Hour	QSOs	Countries	Hour	QSOs	Countries
06z	0		14z	21	EA, F, G<>GM, LA, OK, OZ, SM
07z	6	EA, OK, OZ, SP	15z	15	CT, EA, ON, OK, OZ, SM
08z	15	EA, I, LX, OK, ON, OZ, SP	16z	15	EA, LA, OK, OZ, SM, SP
09z	24	EA, F, HB, I, LA, OE, OZ, S5, SP	17z	13	CT, EA, I, LA, OH, OK, OZ, S5
10z	38	EA, F, G<>GM, HB, I, LA, LX,	18z	8	CT, EA, LA, OZ, SP
		OZ, S5, SP	19z	12	EA, G<>G, G<>GM, LA, ON, OZ
11z	23	EA, F, G<>GM, I, LA, OZ	20z	11	EA, LA, S5, SM, OZ
12z	25	CT, EA, G<>GM, OE, OK, OZ	21z	12	EA, G<>GM, I, OZ, SP
		S5	22z	5	EA, OK ,ON, SP
13z	16	EA, G<>GM, I, S5, ON, OZ	23z	0	

DX Propagation

No F2, TEP or Es Dx (i.e. outside of Europe) was worked or heard this month

EME

For the record, these are the January (JT65A) moon-bounce reports from the DX cluster

2	1457	G4
2	1511	G4IGO > W1JJ -28dB
2	1744	G4IGO > ON4IQ -23 dB
4	1929	W7GJ > M0BCG -20 dB
4	1938	W7GJ > G8PL -22 dB
4	1953	W7GJ > G4PCI -26 dB
4	2038	W7GJ > G3FPQ -20 dB
4	2100	W7GJ > G4DEZ -24 dB
4	2140	G4PCI > W7GJ -25dB
6	2235	MOBCG > W1JJ -22 db
6	2305	W1JJ > M0BCG
13	0050	M0BCG > ZS6NK
30	1709	G4PCI > K7OFT - 25 dB
31	1549	$\mathrm{G} 4 \mathrm{PCI}>\mathrm{W} 1 \mathrm{JJ}-25 \mathrm{~dB}$

Data from various Internet sources. Compilation by GOAEV.

$$
\begin{array}{llll}
\text { Sunspot numbers (SEC) } & \text { Mean } 26.7 & \text { Max } 73\left(23^{\text {rd }}\right) & \text { Min } 0\left(13-14^{\text {th }} \text { and } 29^{\text {th }}-31^{\text {st }}\right) \\
\text { Solar Flux }(28 \mathrm{MHz}) & \text { Mean } 83.5 & \text { Max } 94\left(21^{\text {st }}\right) & \text { Min } 77\left(11-14^{\text {th }}\right)
\end{array}
$$

Solar data for January 2006 are presented in the table at the end of this section. Numbers in the 28 and 50 MHz columns of this table are the total daily "areas" worked/heard from the UK for each of several propagation modes and are a summary of the data presented in the first sections of this Report. On 28 MHz "areas" refer to the number of beacons reported via Es and F-layer; on 50 MHz the number of countries via Es, F-layer modes (including TEP), Aurora and Auroral E. F2 critical frequencies are for Chilton in Oxfordshire (data from RAL via SEC). SIDC spots are from SIDC, and other solar data from the joint USAF/NOAA daily summaries or directly from SEC.

Energetic Events.

Not only were there no M and X class X -ray solar events (which is normal for the solar minimum years), but SEC's summaries record only one C-class event (listed below). This is the mark of a quiet sun!

```
5 th 0917-0926 C4.4 Sf
```

Q-indices from Sodankylä, Finland (Thanks to OH2LX)

Q-indices for January 2006
The Q-indices from Finland show that January 2006 was a generally quiet month with $4^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}$ and $30^{\text {th }}$ worthy of note as particularly quiet days. There were disturbances on $16^{\text {th }}$ and $23^{\text {td }}$ with minor storming on the $26^{\text {th }}$. The $26^{\text {th }}$ was the only day this month when the Kp index or the K-indices from the UK observatories reached 5. Interestingly, the only 6 m aurora detected from the UK was on the $23^{\text {rd }}$ not the $26^{\text {th }}$.

As a reminder of how quiet the geomagnetic field is now compared with this time last year, below is the Q-index graph from OH2LX fro January 2005.

Q-indices for January 2005

K-indices

The following four tables present the Kp index (from SEC) and the Lerwick ("KL"), Eskdalemuir ("KE"), and Hartland ("KH") K-indices (from the British Geological Survey). Each table is set out with the day of the month in the top row followed by rows containing the K-values or each 3-hour period. The bottom row of each table is the sum of the K-values for the day. Pale (yellow) shading indicates $K=5$, darker (grey) when K > 5. There was only a single day in January when Kp or the UK K-indices reached 5.

Planetary K (Kp)

$\mathbf{K} \mathbf{P}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	2	28	29	30	31
00	2	1	2	0	0	1	1	0	0	0	0	1	1	0	2	0	2	2	2	1	1	1	1	3	1	4	3	2	1	1	0
03	1	2	0	1	0	2	1	1	1	0	0	1	0	1	1	3	3	1	1	1	2	1	4	4	1	4	1	1	1	0	0
06	0	1	0	0	1	2	2	2	0	0	0	1	0	0	0	2	2	1	2	0	1	1	3	2	0	2	2	2	1	0	0
09	0	2	0	0	2	2	2	2	0	0	0	1	0	1	0	2	2	2	2	1	1	2	4	0	1	3	2	2	0	0	0
12	2	1	1	0	2	3	1	2	0	0	1	0	1	1	0	4	2	1	3	2	1	3	3	1	1	3	2	1	1	0	1
15	1	1	1	0	0	2	2	0	0	1	1	0	1	1	2	3	2	2	2	3	0	3	2	0	1	6	2	1	1	1	1
18	1	1	1	0	0	1	1	0	1	0	1	0	0	1	2	4	1	1	1	3	0	0	2	1	3	5	2	2	0	0	0
21	1	2	1	0	1	1	0	1	0	0	1	1	1	1	2	3	1	1	2	2	1	2	3	1	3	4	2	2	0	0	1
Σ	8	11	6	1	6	14	10	8	2	1	4	5	4	6	9	21	15	11	15	13	7	13	22	12	11	31	16	13	5	2	3

Lerwick K (Shetlands)

KL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
00	2	1	2	0	0	2	2	0	0	0	1	2	1	1	2	0	2	2	1	1	1	0	1	3	0	4	3	1	1	1	0
03	0	0	0	0	0	2	1	0	0	0	0	1	0	0	1	1	3	1	0	0	2	0	2	1	0	3	1	1	0	0	0
06	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	2	1	0	1	1	0	0	0	0
09	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	2	1	2	1	1	1	1	2	1	0	2	2	1	0	0	0
12	2	1	0	0	1	2	1	0	0	0	0	0	0	1	0	2	1	1	2	1	1	2	3	1	0	2	2	0	0	0	0
15	0	1	1	0	1	2	2	1	0	0	1	0	1	1	1	2	1	2	2	2	0	2	2	0	1	5	2	0	0	0	1
18	0	0	1	1	1	1	0	0	0	0	1	1	1	1	2	3	1	1	1	3	0	0	2	0	3	3	3	3	0	0	0
21	2	3	0	0	1	1	0	1	0	0	0	1	1	0	1	3	0	3	3	1	0	0	3	0	4	5	3	2	1	0	0
Σ	6	7	4	1	5	11	6	3	0	0	3	5	4	4	7	14	10	13	11	9	5	5	17	7	8	25	17	8	2	1	1

Eskdalemuir K (southern Scotland)

| $\mathbf{K E}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| :--- |
| 00 | 3 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 2 | 0 | 1 | 3 | 1 | 4 | 3 | 2 | 1 | 1 | 0 |
| 03 | 1 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 3 | 2 | 1 | 0 | 2 | 0 | 2 | 2 | 0 | 4 | 2 | 2 | 0 | 0 | 0 |
| 06 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 3 | 2 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 09 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 0 | 3 | 2 | 1 | 0 | 0 | 0 |
| 12 | 2 | 1 | 0 | 0 | 1 | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 3 | 1 | 1 | 3 | 2 | 1 | 3 | 3 | 1 | 1 | 3 | 2 | 1 | 1 | 0 | 1 |
| 15 | 1 | 2 | 2 | 0 | 1 | 2 | 3 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 2 | 3 | 1 | 2 | 3 | 3 | 0 | 2 | 2 | 0 | 2 | 5 | 2 | 0 | 0 | 0 | 1 |
| 18 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 3 | 0 | 0 | 2 | 0 | 4 | 4 | 3 | 3 | 0 | 0 | 0 |
| 21 | 2 | 3 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 4 | 1 | 2 | 3 | 1 | 0 | 1 | 4 | 0 | 4 | 5 | 3 | 2 | 1 | 0 | 0 |
| Σ | 10 | 12 | 5 | 2 | 4 | 13 | 10 | 5 | 0 | 1 | 3 | 5 | 4 | 6 | 9 | 19 | 12 | 15 | 15 | 11 | 7 | 8 | 20 | 9 | 12 | 29 | 18 | 12 | 3 | 1 | 2 |

Hartland K (SW England)

| $\mathbf{K H}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 2 | 28 | 29 | 30 | 31 |
| :--- | :---: |
| 00 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 1 | 3 | 2 | 1 | 2 | 2 | 0 | 1 | 3 | 2 | 4 | 3 | 3 | 1 | 1 | 0 |
| 03 | 1 | 1 | 1 | 1 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 3 | 2 | 1 | 1 | 2 | 0 | 3 | 2 | 1 | 4 | 2 | 2 | 0 | 0 | 0 |
| 06 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 3 | 1 | 0 | 1 | 1 | 3 | 2 | 0 | 2 | 2 | 1 | 0 | 0 | 0 |
| 09 | 1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 3 | 1 | 4 | 2 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 2 | 1 | 0 | 1 | 0 |
| 12 | 2 | 1 | 1 | 0 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 3 | 3 | 2 | 3 | 3 | 1 | 1 | 3 | 2 | 1 | 0 | 0 | 1 |
| 15 | 2 | 2 | 2 | 0 | 1 | 2 | 3 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 1 | 3 | 3 | 3 | 0 | 3 | 3 | 0 | 2 | 6 | 2 | 1 | 0 | 0 | 1 |
| 18 | 2 | 1 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 4 | 1 | 2 | 2 | 3 | 0 | 1 | 3 | 0 | 4 | 4 | 3 | 3 | 0 | 0 | 0 |
| 21 | 2 | 3 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 4 | 1 | 3 | 3 | 1 | 0 | 1 | 4 | 1 | 4 | 5 | 3 | 2 | 1 | 0 | 0 |
| Σ | 12 | 13 | 8 | 3 | 6 | 13 | 10 | 5 | 2 | 2 | 5 | 9 | 4 | 7 | 12 | 21 | 12 | 21 | 16 | 14 | 8 | 11 | 23 | 10 | 15 | 31 | 19 | 14 | 2 | 2 | 2 |

January	28 Areas		-- 50 Areas --				2800	- Spots - Max			Ap Aa b-ray			Max foF2		Min foF2		-- Particle Fluences --		
2006	Es	F	Es	DX	A	AE	Flux	SEC	SIDC	Kp				MHz	Hour	MHz		MEV Elec	1MEV Pro	OMEV Prot
01-Jan	5	5	8	0	0	0	87	41	25	2	4	14	A5.8	6.8	13	2.2	05	$3.0 \mathrm{E}+08$	2.0E+06	1.3E+04
02-Jan	1	3	0	0	0	0	85	37	24	2	5	17	A4.9	7.2	09	2.1	07	$5.6 \mathrm{E}+07$	1.1E+06	1.4E+04
03-Jan	1	2	4	0	0	0	85	39	19	2	3	8	A3.6	6.6	14	2.4	07	$6.1 \mathrm{E}+07$	9.7E+05	1.4E+04
04-Jan	1	1	0	0	0	0	84	25	17	1	2	5	A3. 5	6.5	14	2.0	21	$5.9 \mathrm{E}+07$	1.1E+06	1.5E+04
05-Jan	1	0	0	0	0	0	83	23	15	2	3	7	A3. 3	6.4	11	1.9	07	$5.8 \mathrm{E}+07$	1.3E+06	1.5E+04
06-Jan	0	3	0	0	0	0	82	24	15	3	6	14	A2.8	7.2	10	2.0	07	$1.9 \mathrm{E}+07$	8.4E+05	$1.6 \mathrm{E}+04$
07-Jan	4	0	5	0	0	0	79	11	8	2	5	12	A2.1	6.4	12	2.3	07	$9.9 \mathrm{E}+06$	6.2E+05	$1.6 \mathrm{E}+04$
08-Jan	0	1	0	0	0	0	78	11	7	2	4	8	A1.4	6.1	12	2.2	19	1.0E+07	5.1E+05	1.6E+04
09-Jan	3	0	1	0	0	0	78	11	8	1	2	4	<A1	6.3	11	2.0	07	7.3E+06	6.1E+05	1.5E+04
10-Jan	0	0	0	0	0	0	78	11	8	1	1	5	<A1	5.3	10	2.4	19	1.1E+07	7.0E+05	1.5E+04
11-Jan	0	0	0	0	0	0	77	12	8	1	2	7	<A1	5.9	12	2.1	05	9.3E+06	7.9E+05	1.5E+04
12-Jan	0	0	0	0	0	0	77	12	8	1	3	8	<A1	6.1	11	2.4	19	$2.5 \mathrm{E}+06$	$5.4 \mathrm{E}+05$	$1.6 \mathrm{E}+04$
13-Jan	0	0	0	0	0	0	77	0	0	1	2	6	<A1	5.9	11	1.9	07	$3.4 \mathrm{E}+06$	5.9E+05	1.5E+04
14-Jan	0	0	0	0	0	0	77	0	8	1	3	8	<A1	6.2	10	2.2	20	$1.8 \mathrm{E}+06$	$5.8 \mathrm{E}+05$	1.4E+04
15-Jan	1	0	0	0	0	0	81	32	20	2	4	11	A1.7	6.1	09	1.9	04	$2.8 \mathrm{E}+06$	7.5E+05	1.6E+04
16-Jan	0	1	0	0	0	0	84	42	24	4	14	32	A3.0	7.2	12	2.1	07	1.3E+06	6.5E+05	1.5E+04
17-Jan	0	0	0	0	0	0	83	36	22	3	8	18	A3.0	6.0	11	2.3	06	$2.2 \mathrm{E}+06$	$3.4 \mathrm{E}+05$	1.4E+04
18-Jan	0	0	0	0	0	0	86	50	28	2	5	24	A2.9	7.0	13	1.8	06	$5.0 \mathrm{E}+06$	7.6E+05	1.4E+04
19-Jan	0	0	0	0	0	0	89	48	24	3	7	16	A5. 5	6.2	14	2.3	20	1.1E+07	6.4E+05	1.5E+04
20-Jan	0	0	0	0	0	0	91	33	16	3	6	16	A5.0	6.4	14	1.9	19	$1.9 \mathrm{E}+07$	8.3E+05	1.5E+04
21-Jan	1	0	0	0	0	0	94	28	19	2	4	8	A9.8	6.0	13	2.4	20	$6.8 \mathrm{E}+06$	4.4E+05	1.5E+04
22-Jan	0	0	0	0	0	0	93	60	31	3	6	14	A7.8	5.9	12	1.8	05	$6.6 \mathrm{E}+06$	5.3E+05	$1.6 \mathrm{E}+04$
23-Jan	0	3	0	0	1	0	92	73	37	4	15	28	A6.2	7.8	14	1.9	05	$9.8 \mathrm{E}+05$	5.3E+05	$1.6 \mathrm{E}+04$
24-Jan	0	0	0	0	0	0	93	62	30	4	7	11	B1.0	5.9	12	1.9	06	7.7E+06	2.1E+06	1.5E+04
25-Jan	0	0	0	0	0	0	89	42	19	3	7	18	A8.2	6.7	14	2.9	00	$6.4 E+06$	2.1E+06	1.4E+04
26-Jan	0	2	0	0	0	0	87	24	14	6	29	53	A7.4	6.4	12	1.8	06	4.2E+06	2.3E+06	1.4E+04
27-Jan	0	0	0	0	0	0	84	29	9	3	8	21	A6.5	5.5	15	1.7	05	$1.6 \mathrm{E}+08$	$3.0 \mathrm{E}+06$	1.4E+04
28-Jan	1	0	0	0	0	0	80	11	7	2	6	13	A6.6	6.1	12	1.8	02	$3.2 \mathrm{E}+08$	$1.8 \mathrm{E}+06$	1.4E+04
29-Jan	1	1	6	0	0	0	80	0	7	1	3	5	A4.6	6.4	14	2.1	20	4.1E+08	$2.3 E+06$	1.4E+04
30-Jan	0	0	0	0	0	0	79	0	0	1	1	5	A1.2	6.8	12	1.8	05	$3.8 \mathrm{E}+08$	2.9E+06	1.4E+04
31-Jan	1	0	0	0	0	0	78	0	0	1	2	4	<A1	6.2	15	1.9	05	$2.4 \mathrm{E}+08$	4.3E+06	$1.4 \mathrm{E}+04$
Sum	21	22	24	0	1	0														
Average	0.7	0.7	0.8	0.0	0.0	0.0	83.5	26.7	15.4	2.2	5.7	13.5	A3.9	6.4	12	2.1	07	7.1E+07	1.2E+06	1.5E+04
Maximum	5	5	8	0	1	0	94	73	37	6	29	53	B1.0	7.8	15	2.9	07	4.1E+08	4.3E+06	1.6E+04
Minimum	0	0	0	0	0	0	77	0	0	1	1	4	<A1	5.3	09	1.7	21	$9.8 \mathrm{E}+05$	$3.4 \mathrm{E}+05$	1.3E+04
The Six and Te	Rep	t, Ja	uar	2006												ction	, So	r and geo	agnetic da	page 3 of

50 MHz Outside Britain

Compilation and Commentary by G3USF

Continental Europe and the Middle East

Auroral-Related Modes

Geomagnetically - as in other respects - a quiet month, with all continental reports coming from Scandinavia. Thanks, as usual, to OH2LX and OH5IY for the data.

Jan 131750 OH5RAC>OH8(55a)

Jan 161355 49750>OH9(KP02 52a)1820-30 au>OH5IY 1840-50 Au>OH5

```
Jan 26 0050-0110 Au>OH5 1630-1700 Au>OH5 17-1800 JW9SIX>OH5(KP30 mode?)
    JW7SIX>OH5(KP30 mode?) JW5SIX>OH5(KP30) 1730-40 Au>OH5 1750-1800 Au>OH518-1900
    JW5SIX>OH3(mode?) Au>SM1 1820-40 Au>OH5 1850-1900 Au>OH5 2100-10 Au>OH5 2110
    JX7SIX>SM5(mode?)
```


Other Modes

Once again JT6M operation provided the great bulk of reports, with meteor scatter the most likely propagation mode in the great majority of cases. JT6M has its critics, but there can be no doubt but that it maintains a level of activity on the band that it would not otherwise attract, meaning that when other opportunities occur there are more likely to be operators to exploit them. So it was with the occasional sporadic-E events. Contacts attributed to Es were reported on the $1^{\text {st }}, 3^{\text {rd }}, 7^{\text {th }}, 21^{\text {st }}, 28^{\text {th }}$ and $29^{\text {th }}$, with the $29^{\text {th }}$ much the most widespread and most sustained event, though the $1^{\text {st }}$ was clearly the best such event for SV1DH

There were a small number of tropo reports but none were of particular note. With the exception of CN stations and EME operations there were no reports of contacts outside Europe. In this generally discouraging environment it is worth noting that there were no blank days when no contacts were reported. In the compilation that follows stations whose calls are given in full are beacons.

```
Jan 1 09-1000 EA7,EA1>CN(jt) 10-1100 I0>PA(jt) SP9>LA(jt) I0>OZ(ms) OZ>IO(Es) G>EB1(ms)
    YO3KWJ>DL 11-1200 I0>OZ F>EB1(ms) GB3LER>I5 SV8>OZ G>I5 GB3BUX>I0 YO1>DL(ES)
    I7>DL SP9>EB1(ms) F>SQ9 PI7SIX,GB3BUX>I3(Es) UT5G>DL G>SP2(Es) G>OE5(Es) G>DL(t)
    G,GM,GW>9A(Es) IS0>LA(jt) GB3MCB>OE5(Es) LY>11 12-1300 F>OZ G>I0 OZ>EB1(ms)
    EA7>CN(jt) EA7>I5(jt) OZ>18(Es) GB3LER>I0 G>HA7(jt) 1341 G>EB1(ms) 14-1500 UT5G>15
    SV1SIX>OZ G>PA UT>DL UU5SIX>OM5 LZ1JH>DL(Es) LZ2CM>SM1 SV1SIX>DL(Es) 15-1600
    YL2>I2 YO3KWJ>I0 SV1SIX>OK2,SM0 UT>OZ LZ1JH,UU5SIX>SM1,DL UT5G>I4,I2 LZ1>SM1
    LY,SO5>F El>OK2(Es) UT5G>DL G>OK2,OM3 16-1700 LA>I2 GM>OM5 OZ>I5(jt) UR>OZ,DL
    I5>SM0(jt) SP2,YU1>F GU>OK2 G>OE1 YU7>PA LA>DL,I4,I2,I3 G>PA,OK2 17-1800 OH3>LA(jt)
    LZ4>I3(jt) G>EB1(ms) 18-1900 PA>EB1(ms) IS0>CN 1937 OH8>LA(jt) 2017 G>SM0(jt) 21-2200
    \(\mathrm{G}>\mathrm{EB} 1(\mathrm{~ms}) \mathrm{GM}>\mathrm{EB} 1(\mathrm{~ms})\)
Jan 20715 SP9>OZ(jt) 08-0900 I3,I4>SP9(jt) 09-1000 G>EB1(ms) 10-100 G>EB1(ns) EA7>I3(jt)
    OE5>EB1(ms) EA7>F(ms,iono) 11-1200 ON>Ozjt) 12-1300 SP9>ON(jt) GD>EB1(ms)
    EA7>ON(Es?) OZ>I3(jt) 14-1500 ON>EB1(ms) F>EB1(ms) F>I3(jt) 1848-59 PA>EB1(ms),S5(ms)
    1940-9 ON>SMO(jt) OZ>EI(ms) 20-2100 ON>LA(jt) OH6>ON(jt) PA>LA(jt) OH8>LA(jt) OH8>OZ(jt)
    2245 F>SP9(jt)
```

Jan 3 10-1100 G>I4(ms) G>EB1(ms) G>SP9(ms) 1149-50 ON>S5(jt) OZ(I4(jt) 12-1300 S5>ON F>EB1(ms) S5>LA SP9>ON(jt) S5>DL(Es) G>S5 S5>I3(Es) F>EB1(ms) S5>PA(Es) S5>ON(Es) G>I3 G>EB1(ms) 13-1400 G>PA G>S5(ms) G>OZ S5>DL(ms) LA>S5(ms) G>EB1 (ms) 14-1500 F>IS0(jt) SM3>SP9(jt) F>EB1(ms) ON>EB1(ms) 15-1600 F>13(jt) LA>F(jt) ON>OK2(jt) ON>DL(jt) F>OK2(jt) SM3>DL(jt) F>EB1(ms) EA7>EB1(ms) ON>El1(ms) ON>EB1(ms) 16-1700 F>EB1(ms) LA $>E 1(\mathrm{jt}) \mathrm{G}>E B 1$ (ms) 17-1800 GM>SP9(jt) $12>E B 1(\mathrm{~ms}) ~ G M>L A(\mathrm{jt})$ 18-1900 G>EB1(ms) 20-2100 GM>SP9(jt) 21-2200 OZ>EB1(ms) PA>EB1(ms) 22-2300 EA7>EB1(ms) EA7>EA4(ms) 23-2400 $\mathrm{HB}>\mathrm{EB} 1(\mathrm{~ms}) \mathrm{GM}>\mathrm{PA}(\mathrm{jt})$

Jan 4
0729-37 SM3(SP9(ms) PA>SP9(jt) 0834 PA>SP9(jt) 0932 G>EB1(ms) 10-1100 G>EB1(ms) F>EB1(ms) 11-1200 GW>EB1(ms) EA7>EB1(ms) 12-1300 F>EB1(ms) GW>F(jt) 13-1400 $\mathrm{ON}>\mathrm{OZ}(\mathrm{jt}) \mathrm{EA} 7>\mathrm{G}(\mathrm{ms})$ 14-1500 ON>EB1(ms) $1641 \mathrm{SM} 3>\mathrm{LA}(\mathrm{jt})$ 17-1800 F>LA(jt) F>OZ(jt) 1824 CT>F(jt) 19-2000 SM0>LA(jt) SM5>SP9(jt) W7GJ>ON4IQ(eme) W7GJ>(A1Z(eme) SM0>OZ(jt) 202100 W7GJ>PF7M(eme) 21-2200 W7GJ>F6FHP(eme) 2243 GM>EB1(ms)

0759 SP9>OZ(jt) 0805 F>EB1(ms) 1039-41 PA>EB1(ms) LA>OZ(jt) 11-1200 F>EB1(ms) F>OZ(jt) SP9>ES3(jt) LA>ES3(jt) 14-1500 F>OZ(jt) G>OZ(jt) 15-1600 G>S5(jt) OZ>PA(jt/t) 1957 SP9>LA(jt) 21-2200 OH7>OZ(jt) G>EB1(jt)

Jan 6
0909 EA1>EB1(ms) 1135 OZ7IGY>14 PA>OZ(jt) 12-1300 EA7>F(jt) PA>EB1(ms) 13-1400 PA>OZ(jt) OZ>I1(jt) 15-1600 G>OZ(jt) F>OZ(jt) $1602 \mathrm{~F}>\mathrm{OZ}(\mathrm{jt}) 17-1800 \mathrm{SM} 3>O Z(\mathrm{jt}) \mathrm{SM} 4>O N(\mathrm{jt})$ LA>OZ(jt) 18-1900 LA>OZ LA>P9(jt)
$\underline{\operatorname{Jan} 7}$
0025 K7AD>F6FHP(eme) 0659 G>OZ(ms) 0814 GW>OZ(jt) 10-1100 I0>11 I3>11 11-1200 S5>DL I4>DL EB1>OZ(Es/ms) GW>D I5>ON GB3MCB>DL 12-1300 !4>I1 I0>DL I5>I1 14-1500 I6>18 151600 S5>DL,F El>SP6(Es) G,El>DL GB3BAA>SP6 16-1700 El>DL(Es) El>S5(Es) El>SQ9 9H>ON,DL,PA(Es) GM>9A,I8(Es) 17-1800 G>SP9(Es) GM>9A(Es) F>17(Es) I8>F EA1>PA(hjt) CT>PA(jt) 18-1900 OZ>LA(jt) EA1>PA(jt) 1914 EB7>PA(jt/Es) 21-2200 OZ>LA(ms) 22-2300 Sp9>LA(jt)

Jan 8
0550 OK1>OZ(jt) 0754 G>EB1(ms) 0834-52 LA>S5(jt) OK1>LA(jt) 09-1000 I5>EB1(ms) G>OK1(jt) PA>EB1(ms) OK2>OZ(jt) S5>EB1(ms) 10-1100 G>OZ(jt) I0>I5 S5>EB1(ms) I2>ON(ms) HB>ON(jt) PA>OK1(jt) 11-1200 SM5>OZ(jt) $1255 \mathrm{OZ>ON(ms/t)} \mathrm{13-1400} \mathrm{EA7>PA(jt)} \mathrm{14-1500} \mathrm{G>LA(jt)}$ $\mathrm{GM}>\mathrm{OZ}(\mathrm{jt})$ 15-1600 OH8>OZ(jt) SM0>OZ(jt) OZ>LA(jt) OK1>LA(jt) OZ>DL(jt) EB7>CT 16-1700 ON>LA(jt) OZ>PA(jt) G>PA(jt) 17-1800 OZ>SM0(jt) OK1>SM0(jt) 20-2100 LA>PA(jt) G>OZ(jt) 212200 OK1>OZ(jt) G>LA(jt) 2240 GM>OZ(jt)

Jan 90753 F>EB1(ms) 09-1000 OE5>EB1(ms) HB>EB1(Ms) SP9>EB1(ms) 1042 GW>EB1(ms) 11-1200 GW>F(jt) G>EB1(ms) $1320 \mathrm{G}>\mathrm{OZ}(\mathrm{jt})$ 14-1500 EA7>PA(jt) 1650 F>PA(jt) 1751 OZ>LA(jt) 18-1900 SP9>LA(jt) G>LA(jT)2156 OH8>SM0(jt) 22-2300 PA>LA(jt) G>LA(jt) PA>LA(jt)

Jan 10 09-1000 SP9>F(jt) LA>OE5(ms) 11-1200 LA>PA(jt) F>PA(jt) 15-1600 HB9SIX>DL(t) OZ>PA(jt) 161700 OZ>PA(jt) GM>OZ(jt)

Jan 11 08-0900 SM3>SP9(jt) HB>SP9((jt) 1448 G>F(jt) 1643 GM>OZ(jt) 1928 LA>PA 2147 G>EB1(ms) 22-2300 G>LA(jt) CT>EB1́(ms)

Jan 12
09-1000 $\mathrm{F}>E B 1$ (ms) $\mathrm{OZ}>\mathrm{F}(\mathrm{jt}) \mathrm{F}>O Z(\mathrm{jt}) \mathrm{F}>\mid 3(\mathrm{jt}) 10-1100 \mathrm{LA}>O Z(\mathrm{jt}) \mathrm{LA}>F(\mathrm{jt}) 1318 \mathrm{G}>F(\mathrm{j}) 14-1500$ G>F(jt) 18-1900 I5>S)6(ms) SM5>SP9(jt) G>SM5(jt) 19-2000 G>LA(jt) SM6>SM0(jt) OZ>PA(jt) 202100 I0>I5 SM6>LA(jt) SM6>OZ(jt) I0>I2 OH8>LA(jt) OH6>OZ(jt) 21-2200 LZ4>PA(jt) SM6>OZ(jt) OH6>LA(jt) ON>LZ2(jt)

Jan 13 08-0900 ON>F(jt) ON>I2(jt) $1122 G>F(j t) 1622 G>L A(j t)$ 1818-22 CU3URA>CT SP9>LA(jt) 20-2100 $\mathrm{I} 3>\mathrm{OZ}(\mathrm{ms}) \mathrm{I} 2>\mathrm{OZ}(\mathrm{ms})$

Jan 14 09-1000 I2>LZ4(jt) OE5>LA(jt) G>I4(jt) 1341 I0>I5 16-1700 G>LA)jt) LA>LA(jt) 18-1900 LA>LA(jt) 19-2000 GM>LA(jt) 20-2100 GM>SM0(jt) G>SM6(jt) PA>SM0(jt) 21-2200 SM0>OZ(jt) GM>SM6(jt) 22-2300 LA>SM6(jt) SP9>LA(jt)

Jan 15 07-0800 LA>ON(jt) LA>F(jt) SM3>ON(jt) F>OZ(jt) 08-0900 I5>SP9(jt) G>ON(jt) G>LA(jt) GM>LA(jt)
 15-1600 G>OZ(jt) 1940 OZ>EB1(ms) 20-2100 OH8>SP9(jt) PA>EB1(ms) 21-2200 EA7>EB1(ms) GW>PA(jt)

Jan 160908 EA1>EA7(jt) 14-1500 F>EA7(jt) F.OZ(jt) 1628 OH8>OZ(jt) 1853 OZ>SM0(jt) 1903-36 OZ>SM0(jt) SV8>SP9(jt) 2103 S5>OZ(jt) 2254-6 ON>LA(jt) GM>OZ(jt) 2338 ON>SO5(jt)

Jan 17 08-0900 OE5>OZ(jt) OK1>OZ(jt) 10-1100 GM>F(jt) GM>SP9(jt) 1457 SM7>OZ(jt) 1516 SM7>F(jt) 17-18090 G>OZ(jt) 1916-56 S5>OZ(jt) OZ>SP9(jt) 2141 OH8>SP9(jt) 2219 9A>ON(jt)

Jan 18
07-0800 G>SP9(ms/Es) G>EB1(ms) 1053 GM $>O Z(j t)$ 1136-7 GW>PA(jt) HB>I3(jt) 12-1300 $\mathrm{GM}>\mathrm{EB} 1(\mathrm{~ms}) \mathrm{G}>\mathrm{OZ}(\mathrm{mas}) 15-1600 \mathrm{GM}>\mathrm{OZ}(\mathrm{jt}) \mathrm{G}>\mathrm{OZ}(\mathrm{jt}) 19-2000 \mathrm{SM} 7>P A(\mathrm{jt}) \mathrm{G}>P A(\mathrm{jt})$ 20-2100 G>EB1(ms)

Jan 19

$07-0800 \mathrm{I} 3>E B 1(\mathrm{~ms}) \mathrm{G}>E b 1(\mathrm{~ms}) 08-0900 \mathrm{G}>13(\mathrm{jt}) \mathrm{I} 3>F(\mathrm{jt}) 0947 \mathrm{GM}>\mathrm{F}(\mathrm{jt}) 1225$ OE5>EB1(nms) 151600 G>F(jt) HB9SIX>DL(t) 16-1700 IK5ZUL>S5(t) GB3BUX>S5(mas) 17-1800 SP7>SP9(t) 1833 EA8>CT3 19-2000 CN>EA7(jt) 21-2200 CN>WA7(jt)

Jan 20

07-0800 G>OZ(jt) 08-0900 SM7>OZ(jt) G>EA7(ms) 10-1100 GW>EA1(jt) G>EA5(jt) 12-1300 CN>EA7(jt) CN>EA5(jt) 13-1400 G>EB1(ms) GW>EB1(ms) 1517 G>EA7(jt) 1730 G>OZ(ms) 192000 G>IO(jt) 2053 GM>LX(jt) 2129 GM>PA(jt)

Jan 21 08-0900 SP9>OZ(jt) $\mathrm{LX}>\mathrm{OZ}(\mathrm{ms})$ 09-1000 SP9>OPH6(jt) $Y O 2>O Z(j t)$ 10-1100 G>OZ(jt) GM>OZ(jt) 15-1600 G>OZ(jt) 16-1700 G>PA(jt) 1717-37 49948(AF)>CT I3>LX(jt) 18-1900 CN8MC>CT CN>EA7(jt) 19-2000 CN>CT G>ON(jt) CN8MC>EB1(Es) 20-2100 OZ>PA(jt) GM>OZ(ms) 23-2400 OZ>SP9(jt)

Jan 22
0849 LAA>S5(jt) 09-1000 EA7>EB1 10-1100 G>SP9(jt) LA>LX(jt) 11-1200 IS0>I3(jt) OE5>EA7(jt) LX>S5(jt) 12-1300 GM>OZ(ms) 20-2100 SP9>YO2(jt)

Jan $230807 \mathrm{G}>\mathrm{F}(\mathrm{jt}) 0932 \mathrm{~F}>\mathrm{OE} 5(\mathrm{~ms}) 1021 \mathrm{GM}>\mathrm{OE} 5(\mathrm{~ms})$ 1617-45 GW>S5(ms) G>EB1(ms) 1826-41 $\mathrm{G}>\mathrm{OZ}(\mathrm{ms}) \mathrm{F}>\mathrm{OZ}(\mathrm{ms})$ 19-2000 $\mathrm{LX}>\mathrm{OZ}(\mathrm{jt}) \mathrm{CN}>\mathrm{EA}(\mathrm{jt}) \mathrm{CN}>\mathrm{EB} 1(\mathrm{jt}) 22-2300 \mathrm{GM}>\mathrm{OZ}(\mathrm{jt}) \mathrm{G}>\mathrm{OZ}(\mathrm{ms})$

Jan 240807 G>F(jt)_1432_HB9SIX>DL(t) 1618 F>F(jt) 20-2100 G>PA(jt) 21-2200 OZ>PA(jt)
Jan 25 0757-8 GB3BUX,PI7SIX>DL(t) 1049 F>OZ(ms) 11-1200 F>S5(jt) GU>S5(jt) 13-1400 HB9SIX,LX0SIX>DL(t) 1339 S79HP>DF7KF(??) 18-1900 F>ON(fsk441) EB1>ON(jt) 2124 OZ>ON(jt)

Jan $261740 \mathrm{HB}>12(\mathrm{jt})$
Jan $270802 \mathrm{G}>\mathrm{OZ}(\mathrm{ms}) 0945 \mathrm{GW}>\mathrm{S} 5(\mathrm{~ms}) 11-1200 \mathrm{LA}>\mathrm{OZ}(\mathrm{jt}) 13-1400 \mathrm{~EB} 1>\mathrm{ON}(\mathrm{jt}) \mathrm{G}>\mathrm{ON}(\mathrm{jt}) 1448$ $\mathrm{OZ}>\mathrm{OZ}(\mathrm{ms}) 16-1700 \mathrm{GU}>\mathrm{OZ}(\mathrm{jt}) 1821 \mathrm{LX}>\mathrm{OZ}(\mathrm{jt}) 2014 \mathrm{G}>\mathrm{PA}(\mathrm{jt})$

Jan 28
0821 SP9>OZ(jt) $0915 \mathrm{G}>\mathrm{LX}(\mathrm{jt}) 1149 \mathrm{GM}>P A(\mathrm{jt}) 1423 \mathrm{GM}>\mathrm{OZ}(\mathrm{jt}) 15-1600 \mathrm{~S} 5>E B 1(\mathrm{jt}) \mathrm{G}>\mathrm{OZ}(\mathrm{jt})$ 16-1700 GM>OZ(jt) 17-1800 GM>LA(jt) 9H>I1(Es) GM>LA(jt) OZ>PA(jt) 20-2100 GM>EB1(jt) $\mathrm{OZ}>\mathrm{ON}(\mathrm{jt})$ 22-2300 GM>ON(jt)

Jan 29
09-1000 G>S5(ms/iono) SM6>LX(jt) G>LA(jt) G>HB(ms) LX>LA(jt) S5>SP9(jt) 10-1100 G>LX(jt) GW>EB7(ms) G>EB1(ms) I5>S5(t) 11-1200 GB3BUX>S5(ms) G>LA(jt) S5>ON(iono) S5>9A(t) 121300 I5>S5 1328 G>EB1(jt) 1447 GU>EB1(ms) 15-1600 G>EB1(ms) G>EA4(Es) CT>PA(Es) G>EA5 EB1`>F(Es) EA4>PA(Es) EA4>ON(ES) EH4>PA 16-1700 I0>12 EA7>PA EB1>S5(Es)
 9A>EB1(Es) $55>E B 1(E S)$ EH5 $>$ DL(Es) $15>E B 1$ (Es) $E A 2>9 A(E S)$ EH5 >18 (Es) GB3BAA $>E A 4$ 171800 EA7>ON EB1>OE5(Es) $17>E B 1$ (Es) EA2>9A GB3MCB>EA4 EA4>9A(Es) I2>EB1(Es) EH5>9A(Es) HB>EB1(Es) EA2>9A(Es) EH4>9A(Es) I2>EB1(Es) EB7>OE5(ES) I5>EB1(Es)
 EB1>PA EH4>F F>EA5(jt) EH7>12 El>EA7(Es) CN>S5 EH4>9A(Es) EH5>F(Es) CT>9A EH4>EA3 18-1900 EH4>EA7 IS0>EB1 EA7>F CN>I2 EA9>9A,F FX4SIX,I1>CN OH6>SP9(jt) G>LA(jt)

Jan 30

Jan 31
09-1000 SP5>15 F>EA7<jt) OE5>EB1(ms) OE5>EB1(ms) F>EB1(ms) 10-1100 GU>S5(jt) 11-1200 OE6>9A PI7SIX>DL(t) 1729 I2>S5 DL>EB1(ms) 2128 I4>I2

1758 GB3BAA>I4 1825 OZ7IGY>PA

50MHz PROPAGATION REPORT FOR JANUARY 2006 BY SV1DH

1. Data for all days (31)
2. Relatively good days on: 1
3. 48 MHz AF video (3C+9L) on: NIL
4. 55 MHz AF video (5 N) on: NIL

5. Opening	to $O K$	on: 1 (E)	
6.	\cdots	DL	on: $1(E)$
7.	\cdots	PA	on: $1(E)$
8.	\cdots	OZ	on: $1(E)$
9.	\cdots	SM	on: $1(E)$

10. Special events on:

9-14 (Xray bgn level A0)
22 (5C flares)
11. DXCC entities heard/worked during Jan $2006: 5$ on 1 cont
12. DXCC entities heard/worked on $1^{\text {st }}$ Jan $2006: 5$ on 1 cont.

73 COSTAS

The Americas

Auroral-Related Modes

No reports

Other Modes

The Americas could scarcely be said to have burst with activity in December but it shone by comparison with Europe, thanks mainly, it would seem, to continuing tep - albeit at a lower level than in the preceding months. Openings were reported on eleven days, mainly from Brazil. In addition, there were several days with contacts between LU and :PY about which not sufficient is known to indicate the mode involved.

Caribbean<>South America

```
PY 4(9Y) 6(FJ) 7(9Y) 8(V4,YV,9Y) 9(9Y) 14(FM) 17(9Y) 22(9Y) 24(FJ) 28(FM,KP4)
LU 6(YV) 28(KP2)
ZP 26(KP2)
```

Within North America winter sporadic-E was noted on several days, particularly on the $15^{\text {th }}$, when C6 was fairly widely worked and $22^{\text {nd }}$. There were other days when Es appears to have been present but was not specifically identified.

There was one unsupported report of JWOHS being worked by AAOTT on the $14^{\text {th }}$.
JT6M, or at least reports mentioning it, was still a rarity compared with its role in Europe. However, numbers appear to be growing, albeit very slowly.

```
Jan 1 1341 W8>W4 W4>W1 1524 W5>W2 16-1700 W4>W8 2207 W1>W1
Jan 2 0051 W8>W4 13-1400 LU8EMH>PP5AR W1>W1 14-1500 W1>W1,W4 LU1DMA>PP5AR 1449
        LU5EGY>PY1RO 1517 W8>W9(jt) 1850 W8>W1(jt) 2017 W4>W9(jt) 2201 W9>W5(jt)
Jan 3 0232 W0>W8(ms) 0425 W0>W3 1611 W9>W5(jt) 2308 LU7FA>PY2BRZ
Jan 4 1136 W5>W5 1748 ON4IQ>K9MU(eme) 19-2000 M0BCG>W7GJ(eme) G8PL>W7GJ(eme)
    G4PCI>W7GJ(eme) 20-2100 G3FPQ>W7GJ(eme) ON4IQ>W7GJ(eme) 21-2200
    G4DEZ>W7GJ(eme) 2335 9Y4AT>PY5EW
Jan 5 0049 W8>W4 2240 K0KP>XE1
Jan 6 00-0100 LU1FA>YV5ESN FJ5DX>PY3ARZ 0315 W9>W3(jt) 22-2300 K7AD>W1JJ(eme) 2305
    M0BCG>W1JJ(eme)
Jan 7 0141 W9>W5 0115-41 9Y4AT>PY5EW W9>W5 02-0300 W1>W1 W0>W0 W8>W4 0440 W1>W8
    13-1400 W4>W8 14-1500 W1>W4 15-1600 VE3>W8 16-1700 W4>W4,W5 W7>W4 22-2300
    W1,W4,W8>W8 2323 W8>W8
Jan 8 00-0100 W7>W5(jt) 9Y4AT,YV4AB,V44KAI>PY5EW W3>W5(jt) W0>W8 02-0300 W4>W8 W1>W8
    0348 W3>W3 12-1300 W4>W4 W8>W3 13-1400 W4>W4,W8 14-1500 W1>W8,W4 W4>W4
Jan 9 2334 9Y4AT>PY5EW
Jan 10 no reports
Jan 11 0152 W1>W4(jt) 1802 W9>W8
```

Jan 12 02-0300 W3>W3 W4,W9>W8 03-0400 W4>W8 0410 VE3>W8 14-1500 W3DOG,W3CCX>W3 232400 W4,W9VW>W4

Jan13 00-0100 W3>W3 03-0400 W5>W5 W9>W8 21-2200 W4CHA,W3HH>W9 W5,VE1>W4 VE1>W3 22-2300 VE1SMU,W5RP,W4,K0KP>W3 WB0RMO,W5,W8,N0LL,W9>W5 W4>W9 W4,VO1>W2 VE1>W8 W1,W3>W0 W0>W4 23-2400 VO1,W8>W1 KA0CDN>W9 W0>W8 VE4VHF,W1>W4 W8>W3 VE4VHF>W0

Abstract

Jan 14 00-0100 W3>W9,W3 W8,W0>W3 W0>W1 01-0200 W3DOG>W0 VE2>W5 0222 K4KWK>W1 JW0HS>AA1TT(??) 1340 P49T>K2LE 1543 VE3>W8 1636 W1>W8 1937-8 W4>W4 W1,W3>W1 21-2200 W1>W1 2244 W4>KP4 23-2400 W8>W8 PY5HOT>FM5JC

Jan 150050 KD4NMI>W3 01-0200 KP4>W1 WB0RMO,W9VW>W3 W3>W2 W8>W0 02-0300 W3>W0 W0,VE4VHF>W4 W2>W0 ZS6NK>W7GJ(eme) W0>W5 W3>KP4 03-0400 KP4>W1 W4>W8 131400 W4>W1 13-1400 W5>W5 C6AFP>WZ8D W3>W1 W3HH>W8 VE1>W4 14-1500 VE1>W4,W8 W4,W1>W1 VP9GE>K8KS,TI8TBT 15-1600 W8>W2 W1,W3>W4 W4>W5 16-1700 K4AHO $>W 5$ C6AGN $>W 5$ PR,KA3DQD, 17-1800 C6AGN>W5PR,W8GG,N3DB W9>W9,W3 W3>W2 18-1900 W4>W2,W0,W1 K4AHO>W3 W4CHA>W3 C6AGN>K8NWD,N3DB W8>W3 19-2000 W4>W3,W2 20-2100 W4>W8,W3 W5>W2 22-2300 W2,W5,W1>W5 W4>W3 W8,W5,W0,W9>W4 W9>W9 W4>VE3 23-2400 W4>W8,W1,W2,W4,W0 W3>W5,W3 VE3,W5,W9,VE2>W4

Jan 16 00-0100 KP3A>W4 W0>W8 01-0200 W0>W5 W4>W8 19-2000 W1>W1 21-2200 VE1>VE3,W9 W4>VE2 22-2300 W1>W1,W4 W8>W1 VE1>W4,W2,W0 W4>W4 23-2400 W9,W1,W3,W2,VE3>W4 W0>W3

Jan 17 00-0100 W9VW>W3 VE2,W2>W4 W4>W1 01-0200 W5>W3,W0 VE3,W8,W9>W4 W2,W3>W3 0202 W3>W2 20-2100 WP3UX>KI4FIA,KG4NZR 21-2200 W4>W2 2318-33 W3>W3 9Y4AT>PP5JD

Jan 18 02-0300 W2>W8 W3>W3
Jan 190045 W1>W1 0154-7 W4>W8 02-0300 W4>W8,W3 W8,W3,W4,W5,W2>W3 VE3>W4 0316 W9>W3 22-2300 W3>W3 2333 W2>W3

Jan 200058 W5>W5 0129 W4>W4 0412 W4>W2 1451 W5>W5(ms) 2134 W1>W1 2211 W3>W3 2352 VE2>W4

Jan 21 00-0100 VE1SMU>W3 VE1>W1,W2,W8 12-1300 W4>W1 W0>W4 1411 W8>W4 1518 W4>W4 17-1800 N0LL>W8 W4>W5 18-1900 QW5>W5(jt) 19-2000 W4,W1>W4 W5>W5 W1,W3>W1 202100 W5>W5 W0>W0 W4>W4,W8,W2 W1,W2>W1 W3>W3,W4 21-2200 W4>W2 W0>W5,W0 W1>W8 W3,W4>W3 22-2300 W9>W9 W3>W3 W1>W1 W0>W0 23-2400 W0>W0

Jan 22 00-0100 W3,W2>W3 W4>W4 W3>W1 01-0200 W7>W7 02-0300 W8>W8 9Y4AT>PY5EW W4>W4 04-0500 W1>W1 W9,W8>W3 05-0600 W1>W4,W1 W3,W4>W0 W5>W5 0742 W6>W6 12-1300 W1>W1 13-1400 W1,W2>W1 W2,W1>W8 14-1500 W1,W2,W3,W8>W0 W4,W3>W2 W1>W4,W8 15-1600 W3,W0>W0 W7>W7 W8>W8,W4 W2>W1 W4>W3 16-1700 W2,W4,W8>W0 W1>W4,W8,W1,W2 W5>W8 17-1800 W5>W8 W1>W1 W2,W3,W4>W2 W1,W3,W5>W0 W4>W4 W2>W1 18-1900 W2>W1 W8>W4 W3>W8 W0>W5 19-2000 W2,W3>W1 W0>W8 W3>W2 W1,W4>W3 2014-21 VE3>W5 W2>W1 W1>VE9 21-2200 W2>W1 W5>W5 W3,W1,W4>W2 W1,W2,W3>W1 W1>VE2

Jan 23 00-0100 W3>W0 N5NB>W6 W2,W3,W1>W1 01-0200 W3>W3,VE3 W1,W3>W1 W2,W0>W0 020300 VE3>W3 W3>W2 03-0400 W2>W0

The Six and Ten Report, January 2006
Section 4, 50MHz Outside of Britain, page 6 of 7

Jan 24
Jan 25
Jan 26
Jan 27
Jan 28 WZ8D/KP2>LU2NI,K8LEE,WP3UX PY2DS>WZ8D 0216-58 FM1HM $>$ PY5HOT W2>W4 0319 W1>W1 1210 W4>W1 14-1500 W4>W4 W2>W1 15-1600 W1>W1 W4>W1,W5 23-2400 YV5DSL>PR8ZX PY5HOT,LU8DIO>YV5DSL W5>W6

Jan 29
00-0100 KA0CDN,WA7X>XE2 01-0200 W7>W6 K6FV>W7 FJ5DX>PY5HOT WZ8D/KP2>WP3UX 1251-5 W1>W1,W4 1439 VE3>W4 2105 C6AFP>WZ8D/KP2

Jan 300202 W4>W9
Jan 310135 W7>W6

Asia/Pacific

Japan
Self-evidently, our Japanese colleagues also had a very quiet month. Thanks JA1VOK.

6m Results in Japan from JA1VOK

$29 / 1$	$0640-0830$	DS1KUL, 1MFC, 1MIN,1PDF,2AAW, 2COI
30	$0714-0720$	6K2DHP
31	$0733-0735$	DS4DBF

Elsewhere

Jan 2 02-0300 VK4RTL,VK4ABP>VK3
Jan 50350 VK2AH $>$ ZL2DX
Jan 70107 FK8SIX>VK6HD 0345 VK3>VK6
Jan 60050 VK4BW>ZL2DX 0115 VK3BQ>ZL2DX

Beacon News and 28 MHz Worldwide

Compilation and Commentary by G3USF

Beacon News

28176	PY2RFF	now running 3watts to Ringo (PY2RF July 2006)
28183	DL4SS	JN57DR . It is understood that this is not an authorised beacon and it may now have ceased transmissions (June 2006)
28234.9	EA2ZRA	IN91NP heard in UK (June 2006)
28239.1	AL7FS	Anchorage AK with 3 watts. Current antenna KT34A at 40 ft but will change to omni (AL7FS June 2006) e-mail beacon@AL7FS.us
28250		Synchronized beacons N4ESS Tampa at 0.00. N4ES also Tampa at 0.20. WB4WOR at Greemsboro NC testing but will transmit at 0.30 . K7EK, Spanaway WA at 0.40 and N4ES at Clearwater FL transmits at 0.50. Currently all stations transmit every minute but, when additional stations join, they will move into a two-minute cycle. Note that K7EK has moved to this new frequency. (K7EK)
28280	DKOTS	reported with poor keying from Trainstein (JN67HV) (ON4TA July)
28265	NC4SW	Zebulon NC (FN05) new beacon (May 2006 various)
50000	9A1CAL	resumed transmissions in January using horizontally polarized omni antenna (9A1Z)
50003	VE2TH	previously reported QRT is in fact active (VE2TH)
50006	A71A	power now 110 watts.
50022	HG8BVB	KN06OQ new beacon running 5 watts to GP (HA8BS July)
50024	VE9BEA	QRT (VE9BEA)
50025	YV4AB	Valencia (FK60AD) now runs 15 watts to an AR6 at 1210m asl (YV4AB)
50025,7	6Y5RC	now on this frequency (several)
50049.6	LZ1SJ	reported with 2 watts from KN32DR(June)
50049	VE8BY.	Larry VYOHL, says he has replaced his 6 m Ringo Ranger with a Comprod 201-70 vertical dipole. He says that his Ringo was 'the target for the 20 kg ravens that inhabit this part of the world. They would 'trampoline' on the matching ring, bending it severely out of match. After a dozen or so fixes the ring would break and have to be replaced.' His new antenna is such a good match that he now rates his output at 35 watts.
50062	W7KNT	Stevensville MT DN36 (K0GU)
50066.0	K1MS	Westford MA (FN42GM) new beacons with 15 watts of a1 to 3 -el. QTF 050
50067	EA4CRP	(IM68MU) reported here. Nothing further known (DK1MAX)
50069	XE3ARV	reported from EK59. No further details (July)
50080	4X4SIX	now Jerusalem KJM71NU with 5 watts to dipole at 500m asl.

28 MHz Worldwide

Few intercontinental paths featured strongly. The most consistent was between North and South America, where openings were reported on 22 days, with the morning period the strongest with reports on 13 days. The other reasonably reliable path was was Europe<>Africa, with reports on 20 days. Again, the (European) morning period was the most reliable, with reports on 11 days. Asia was copied in Australia on 17 days.

Otherwise, intercontinental paths were unreliable and scrappy. So, Europe<>Asia was reported on 8 days, Europe<>Oceania and Europe<>South America on three days, Europe<>North America on 2 days. North Americans reported four days with propagation into Oceania and none at all with Asia or Africa. Apart from Europe, Africa was reported on only two days in Asia, once in South America and not at all in Oceania and North America.

The only areas of high consistency were within Europe, where there were reports on 28 days, with evenings the most consistent, reported on 17 days, and North America, where there were openings on 26 days. The morning and noon periods are known to have been open on 20 days. There was occasional F-layer propagation between stations situated towards the margins of the continent. A substantial proportion of the intra-European loggings were apparently attributable to meteor-scatter. However, there were several with strong sporadic-E, including most of the 1st, the evening of the 2 nd and the morning of the 4th, with other good openings on the 6th, 7th, 12th and 24th. The NAC contest on the 14thalways generates a fair level of activity. Between 1813 and 1818 OH6 worked OH1,SM3 and SM5 with auroral tone, but subsequent contacts within Scandinavia were apparently not auroral. However, a contact between JW and LA on the evening of the 16th was possibly attributable to auroral E, OH9TEN was heard strongly auroral by SM2LIY at 2320 on the 25 th and again at 1633 on the 26th.

Among the better contacts reported were one between France and W2 on the (European) afternoon of the 10th, CEOZ strongly into a wide swathe of the United States on the local afternoon/evening of the 23rd, while 6O0N and V25G into Europe around noon on the 26th. Finally, the US and Canada enjoyed strong and widespread Es on the evening of the 15th.

Not an exciting haul - yet enough to indicate that, even so close to solar minimum Ten metres was not a completely lost cause.

de－January 2006
To Africa
100
80
60
40
20
0
0

$\stackrel{0}{8}$

 ？

岂

From
NA

Reports of beacons on 14.1 MHz for January 2006 from G2AHU, G3IMW, G3USF, G4JCC and G0AEV. Compilation by GOAEV.

Beacon graphs legend

Legend for all beacon graphs in this Section: - graph bars (left Y-axis): beacon reliability as the percentage of days a beacon was heard by any UK observer within each time band. Graph lines (right Y-axis): Signal Strength as the average of the daily maximum Signal reported by any observer in each time band. Time band codes (X-axis): 6=0600-0900, $9=0900-1200,12=1200-1500$, etc. Callsigns are followed by daily reliability figures, the percentage of days per month when the beacon was reported.

Forms for reporting beacons on paper are at http://www.6and10.org.uk/beacon forms.htm.

Beacon graphs

The 3 beacons within single hop distance of the UK (4X6TU, OH2B and CS3B) all returned strong results with these beacons being heard every day and with reliabilities close to 100% in the 09 and $12 z$ periods. Most of the results are similar to those returned last month - the more noticeable differences being the better performance in January of RR9O and the poorer performance of YV5B.

Several features in the results seem to reflect something other than propagation. The most obvious of these are the high reliabilities shown for CS3B and 4U1UN in the $21 z$ period. These happen because most reporters' visits to the band after 21 z appear only to take place in the unusual circumstance of the band was open in the previous period. In this case, the results indicate that if propagation is available in the mid evening there is a high probability it will continue into the 21 z period.

5Z4B still has a broken-up transmission, which might explain the relatively poor showing of this beacon. OA4B is effectively QRT (but may be active now and again) while LU4AA is certainly off-air.

